CONJUGATE PROBLEM OF NONSTATIONARY
HEAT TRANSFER WITH BLOWING

.. B. Gdalevich UDC 536.242

A solution is presented for the problem of conjugate nonstationary heaf transfer in a laminar
boundary layer on the boundary of a semliinfinite porous medium when the blowing velocity
varies with time as t71/2,

Blowiné in a boundary layer results in 1) direct cooling of the body surface as a result of heat transfer
to the coolant and 2) degradation of the heat transfer between the body and the main flow.

Traditionally, heat transfer in the boundary layer on a permeable surface was examined without taking
account of the influence of the porous body; hence, the boundary conditions on the interphasal body—fluid sur-
face were considered known beforehand [1]. To take account of the connection between the heat transfer in the
boundary layer and the porous body, it is necessary to solve jointly the boundary layer equation on a permeable
interphasal body—fluid surface and the heat conduction equation within the porous body (i.e., formulate a con-
jugate problem [2]).

Few authors examined the problem of boundary layer control in a conjugate formulation. The effect of
"underheating" of a fluid at the surface of a longitudinally streamlined plate caused by homogeneous suction
was computed in [3]. Two heat-transfer problems in a laminar boundary layer on the boundary of a porous
medium (0 < x < %, —w© <y < 0) when the blowing velocity is proportional to x¥? are solved in [4]. Either
convective heat transport or heat conduction in the main-stream direction was taken into accountinthebody.
By using the equation of heat conduction in a porous body derived in [6], the author graphically showed in [5]
the influence of the heat conductivity of a porous plate (—° =x =%, 0 =y =h) on the heat transfer in Couette
hot-gas flow on its surface when pvl o = const. A method was proposed in [7] for the computation of the cool-
ing of a porous wall (0 =x =%, 0 =y =<h) in a turbulent compressible gas flow. The heat conduction of the
coolant was considered negligible as compared to the heat conduction of the wall material, whose value in the
main-stream direction is negligible in comparison to the value in the transverse direction. The authors dis-
carded the usual assumption about equality of the body and cooling surface temperatures on the interface. Sta
tionary heat transfer was considered in all the problems listed.

i

Let us consider heat transfer in a body-fluid system consisting of a half-space (y > 0) filled with a vis-
cous incompressible fluid and a porous mass (y < 0) which is set impulsively in motion with a constant velo-
city U, parallel to the plane y = 0.

The equations of a laminar boundary layer with blow have the usual form

dvldy = 0, Oulot - vouldy = vd2u/dy?, u(y, 0) =0, (1)
w(0, ©)y=U,, u(oo, £)=0, v(0, &) =v,(f).

We assume the coolant to be sucked continuously through the surface y = 0, and the speed of the blowing to be
proportional to t=1/%

v (1) = Vo (v/t)12, V> 0. @)

Then problem (1) is self-similar, and its solution is [8]

s (o erfe(n—V,)
u* (n) erfic(—V,) 3)
n = y/2 (vt)'/2.
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To describe the heat transfer in a porous body we use the equation derived in [9]:

[eg0s (1 — ) + ;0] %z;— — —div(—2grad T) —c,p;4V* grad T, @)

where T is the temperature of an arbitrary point of the porous material; V*, velocity of the liquid phase in the
pores; ¥, porosity factor; kf (kg), heat conduction coefficient of the liquid phase (the porous skeleton); A = (1 —
A)kg + Akg, effectiveheat conduction of the porous material;

2(1.
A= o (1= UL+ 9y, 23>0, @)

Equation (4) takes account of the effect of the porosity and the flow of the liquid phase through the porous skele-
ton, and also agrees well with experimental results. This latter was not taken into account by a number of
authors [6, 10, 11].

Both in the pores of the skeleton and in the boundary layer the transverse fluid velocity component is a
function of just the time and equals vy(v / t)1/ 2. the blowing velocity onthe contact surface y = 0. We assume
equality of the skeleton and coolant temperatures upon emergence from the pores (for y = 0 [12]). The fluid
being blown is homogeneous with the fluid of the main stream. Tet us formulate the thermal conjugate problem:

an 1/2 an asz ou \?

L LYyt | =k —L -1, 0, t>0, 5
CiPe [ o + Vo (vlt) 3 7 35 +H( 3y y> > (5)
oT oT 2

[eg0s (1 — ) + ool + oo Vo Wity 22 =0 ZL <o, t>0. )
ot - oy oy
The initial conditions (t = 0) are
Tf:Tm y>0, (7)
T=0, y<0. 3)
The boundary conditions (t > 0) are
Tf = T, y = 0, (9)
ks (0T 1/0y) = 1 (0T/0y), y =0, 10)
Tf———TO, Y= o0, (11)
T=0, y=—oco. 12)

Taking account of (3), the dimens ionless form of the problem (5)-(12) is

a0, do; 4PrEcexpl—2(n—Vo) 13)
! 2 —V = "y
g RO, ferfe (— Vo)
420 2Pr d0 “(14)
Kep(1—¥) + — V] — =0,
e Rl TP =Wl
8, =0, n=0, (15)
—d—ef—:[(l_A)K+A1f9,n=o, (16)
dn dn
0=0, n=—o0, (18)

where u* = w/Ug; 8¢ = Tg/To; 0= T/ To; K = ke /kg; Kp = (csps/ cfpg); Ee = U,%/ c¢Ty, Eckert number; Pr = cfy/
ke, Prandtl number. The solution of (13) satisfying boundary condition (17) has the form [13]
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[ 1/2 12
8, — — hl(n, Pr, Vo)—7 (—p?) erfc[Pr! /2 (n — Vo) - 1,

- (19)
I, Pr, V)= | exp[—Pr(t —VoPlerfe[(2—Pr)'/* (t—Vy)l dt,
t=n
where
_ 2PrEc . ’ (20)
[70(2 — Pr)]/2 ferfc (— V)12
The solution of (14) satisfying the boundary condition (18) has the form
0 = ¢, erfc [— (a/26)'% (b — V)],
where
a=2Pr/[(1 —A)K + Al, b= Ko(1 — ) - }.
We find the constants ¢, c, from the conjugate conditions (15)-(16):
= AJA, ¢y = AJA,
where
A= [1 —RI(0, Pr, Vo)ll(1 — 4) K + Al(2abimy*? exp [— a ($V)2/26] —
— hexp (— Pr Vi) erfc [—V, (2 — Pr)!/?] erfc [(a/26) >4V );
A, = exp(—Pr V) {l —hI (0, Pr, V) -+ (8/2)(/Pr)'/? erfe(— Pr'/2V ) erfc [— V(2 — Pr)!/2]}; “
A = exp (— Pr V§)erfc [(a/20)/* V] +
- (abl2Pr)/ 2[(1 — A) K + Alexp [-— a ($V )2 2b] erfc (— Pri/2V,).
In the case of an impermeable wall (¥ = V; = 0), the constants ¢,, ¢, are evaluated from the formulas
1= MR, &= R A,
Ay = 2(PrKK, o /m) /2 [1 — 11 (0, Pr)] —E,
(22)

Ay =1—hI(0, Pr)+ (M/2)(/Pr)' /2,
A =14 (KKep)'"?,
i = 2PrEc/s (2— Pr)'/2,

The appropriate solution agrees with the solution in [14].

The integral 1(0, Pr, V;) in (21) can be expressed in terms of elementary functions if the method of eval-
uating improper multiple integrals proposed by Poisson is used:

o«

1(0, Pr, V) = j‘exp —Pr(x — Vol erfc [(2—Pr)" /2 (x — V)] dx =

)21/2j exp [— Pr (x — V)4 ( eXp(—yZ)dy) dx =
0

(2—Pr)1/2(x—v)

o oo

2
:(—n—y—/zjvdx j‘ exp [— Pr(x — V2 — 17 dy—

j {v exp [-— Pr (x — VP2 — 2l dxdy.

0 (2—Pr) 1 /2(x—~V,) 0 (o pry
After going over to polar coordinates

{ x=Vo+ (Pry"?rcos g,
y =rsing,

ds = lg Ex y; drdg = (Pry™*rdrde
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Fig. 1. Dependence of the heat-flux ratio q,,/q, on the blowing
for different body—1fluid pairs when the Eckert number is Ec = 0,
1, 4: 1) glass (ordinary)—air; 2) rubber—air; 3) aluminum (99%) —
air; n = 2 (4", ¢ = 50%.

we obtain
9 /2 =
(mPr)'/?

arctg( 2—Pr )l /2 (2—Pr)1/2V0
Pr

10, Pr, V) = 2—Pr

exp (— r2) rdr = {% — arctg ( )”2]/&5 Pr)' /% exp [(2 — Pr) V31

The heat flux density through the body— fluid interface is proportional to t-¥2:

Ty

I {herfc [— Vo (2 —Pr)' /%] + ¢} exp(—PrV3),

o (1) = k(0T {08)]y0 = —

and the ratio q,,(t) /q(t), where qg(t) is the heat flux density through the body—fluid interface in the case of
an impermeable wall, equals

Gu/o = exp (— PrVi){herfc [— Vo (2 — Pr)' /%) - c}l(h + ¢y).- (23)

Numerical computations by using (21)-(23) showed:

1) the dependence of the ratio q, /dq, on the conjugate parameter o = 2(PrKKCp/ 7r)1/ 2 is not monotonic
in nature;

2) an increase in the Eckert number is accompanied by growth of the ratio qw/qo;

3) as the blowing velocity Vy(¢ = const) rises, the ratio qw/qo decreases almost linearly; the decrease
will be more abrupt the greater the Eckert number Ec;

4) the ratio ¢,/q, hardly changes with the rise in body porosity ¥(V, = const).

An example of the computations is presented in Fig. 1.
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HEATING OF A BULKY BODY BY A CIRCULAR HEAT
SOURCE WITH HEAT ELIMINATION FROM THE
SURFACE TAKEN INTO ACCOUNT

L. B. Melamed UDC 536.24.02

Results of an analytical and numerical solution of the problem, in a form suitable for the deter-
mination of material properties, are given.

The problerh of heating a bulky body by a circular heat source is a computational scheme of an enormous
number of local-heating cases encountered in engineering. Included here are the electroerosive treatment of
metals, electron-beam and laser treatment, welding, the action of local heat sources in a fire, and problems
of many other branches of engineering. This research is performed directly in connection with the problem of
determining the heat conductivity of structural constructions (panels, etc.) under nondestructive testing = the
action of a circular heat source of given intensity on the surface of an item. A stationary modification of such
a method is proposed in [1]. The thermal engineering basis of the nonstationary modification of the method,
proposed by the same author, is examined below. Particular cases of this computational scheme were exa-
mined in [2-8].

The problem is formulated thus. The equation

38 #0100 50

& - - . r 220, >0
R =

with the boundary conditions

86=0 for T=0, 6>0 for r, 2—> o0,
00

Bi6— — = A(r, 1) for 2=0
0z

is solved.

In quadratures, the solution of the problem has the form

T

L) 3
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